
Esprit Database ProgrammingEsprit Database Programming

How to use DBObjects as Persistency Layer for How to use DBObjects as Persistency Layer for
high performance Database Applicationshigh performance Database Applications

June 2010June 2010
Rainer BüschRainer Büsch

Inhaltsverzeichnis
 1 Introduction..5

 1.1 About this document...5
 1.1.1 What's covered by this document...5
 1.1.2 What's not covered by this document..5
 1.1.3 Presuppositions..5

 1.2 Installing the software...5
 1.2.1 Software prerequisites..5
 1.2.2 Installing the software..5
 1.2.3 Setting the classpath...5

 1.3 What's a DBObject?..6
 1.3.1 Object relational Mapping...6
 1.3.2 Composed persistent objects..6
 1.3.3 DBObjects for database views...7

 2 Creating the Database..7

 3 Creating DBObjects...7
 3.1 How a DBObject looks like..8

 3.1.1 Static methods..8
 3.1.2 Instance level methods...8
 3.1.3 Member variables...8
 3.1.4 The master instance..9

 3.2 Column type mapping...9
 3.2.1 Available data types...9
 3.2.2 Column type mapping by naming conventions..10
 3.2.3 Using custom column type mapping ...10
 3.2.4 Using primary keys..10
 3.2.5 Primary/foreign key faking..11

 4 Connecting to a database...11
 4.1 Database credentials...11

 4.1.1 Creating a credential..11
 4.1.2 Reading credentials from the commandline...12
 4.1.3 Reading credentials from a file..12
 4.1.4 Advanced Credential parameters...13

 4.2 Establishing connections..13
 4.2.1 Establishing a single database connection...13
 4.2.2 Establishing a pool of database connections..13
 4.2.3 Closing the database connection..14

 5 Working with DBObjects...14
 5.1 Selecting records from the database...14

 5.1.1 Selecting a single record..14
 5.1.2 Selecting multiple records by condition...15
 5.1.3 Iterating through query results...15
 5.1.4 Sorting records...16
 5.1.5 Monitoring asynchroneous record loads..16
 5.1.6 Using more complex SQL conditions..17

 5.2 4.2 Inserting new records..17
 5.2.1 How to instantiate and insert a record..17

- 2 -

 5.2.2 Using the master instance for inserts...18
 5.2.3 Automatic primary key generation...18
 5.2.4 Using a primary key factory...18
 5.2.5 Using a factory for setting default values on insert...19

 5.3 Updating records...19
 5.4 Deleting records..20

 5.4.1 Deleting a single record...20
 5.4.2 Deleting multiple records by condition..20
 5.4.3 Primary-Key only selects...21

 5.5 Forced insert and update...21

 6 Running transactions...22
 6.1 How to use transactions..22
 6.2 Running nested transactions...22
 6.3 Running multiple transactions in parallel...23

 7 Multiple database connections..23
 7.1 Connecting to multiple databases...23
 7.2 Database cross copy example...23
 7.3 Conversion between different table structures..24

 8 Importing/Exporting data..25
 8.1 Formatting output...25

 8.1.1 Creating HTML output..25
 8.1.2 Creating XML output...25

 8.2 Loading/Unloading data with UNL..26
 8.2.1 Writing UNL output...26
 8.2.2 Reading UNL input..26
 8.2.3 Handling UNL parsing errors...27

 9 Special features...27
 9.1 Comparing DBObjects..27

 9.1.1 Checking equality of primary keys..27
 9.1.2 Checking equality of attributes..27
 9.1.3 Using Comparable implementation...28

 9.2 Table oriented actions...28
 9.2.1 Checking table existence..28
 9.2.2 Creating the table...28
 9.2.3 Dropping a table...28
 9.2.4 Counting records in a table..29

 9.3 Using database schemas...29
 9.4 Storing zero and blank values...29

 9.4.1 Storing empty strings...29
 9.4.2 Storing numeric zero values...30

 9.5 Logging...30
 9.5.1 Using a custom Logger..30
 9.5.2 Switching off messages..30
 9.5.3 Printing different LogLevels..31

 10 Example partlist program..31

 11 General purpose database tools...32

- 3 -

 11.1 Tools for executing SQL commands...32
 11.1.1 DBExecute Tool...32
 11.1.2 DBSelect Tool..32

 11.2 Tools for Exporting/Importing data in UNL format...33
 11.2.1 UnlExport Tool...33
 11.2.2 UnlImport Tool...33
 11.2.3 UnlExport Tool...34

 11.3 Interactive Tools..34
 11.3.1 TableEditTool...34

 12 Additional information...34

- 4 -

 1 1 IntroductionIntroduction

 1.1 About this document

 1.1.1 What's covered by this document

This manual describes the basic features of the DBObject based persistency solution provided by
the the EspritAppSuite software. You will learn how to connect to a database and how to work with
raw DBObjects for reading/writing data from/to the database.

 1.1.2 What's not covered by this document

There are advanced features of the software which are not covered here:

➔ Using DBObjects for building composed persistent objects (ComposedRecord instances)

➔ Writing database applications using the graphical user interface API of the EspritAppSuite.

➔ Using DBObjects in a client-server environment with remote database access.

 1.1.3 Presuppositions

The reader should be quite firm in standard Java coding and think object-oriented. Knowledge
about multi-threading is also very helpful.

For all coding done in this manual we suppose that your CLASSPATH environment variable
contains at least these additional entries:

➔ The jdbc driver jar-file of your database system vendor.

➔ The EspritAppSuite.jar file which resides in your <installDir>/lib directory.

➔ The base directory for finding the DBObject subclasses of your database.

 1.2 Installing the software

 1.2.1 Software prerequisites

You need to have installed the Java Runtime Environment 1.7x. To find out your installed java
version type the following command on your terminal command line:
java -version

 1.2.2 Installing the software

The EspritAppSuite software is shipped in a single zipped file called EspritAppSuite.zip which you
have to extract into any target directory which we refer to as ESPRIT_HOME (we recommend
C:/Esprit/EspritAppSuite as installation directory). If you haven't got a zip tool you can also use the
jar command line tool which is included in the Java SDK installation:
mkdir C:\Esprit\EspritAppSuite
jar xvf EspritAppSuite.zip C:\Esprit\EspritAppSuite

In the target directory you will find a Readme.txt file that helps you further.

 1.2.3 Setting the classpath

The most important thing for running the EspritAppSuite software (as for any other Java Program)

- 5 -

is the CLASSPATH environment variable beeing set correctly so that all necessary classes and
resources can be found. The following excerpt of the dbocompile.bat file shows what settings you
must have as a minimum.
set ESPRIT_HOME=C:\Esprit\EspritAppSuite
set CLASSPATH=%CLASSPATH%;%ESPRIT_HOME%\lib\EspritAppSuite.jar // Esprit software
set CLASSPATH=%CLASSPATH%;%ESPRIT_HOME%\lib\jdbcdriver.jar // !Your! JDBC Driver
set CLASSPATH=%CLASSPATH%;%YOURPROJECT%\classes // Your compiled DBObject subclasses

The value of the ESPRIT_HOME variable must be adapted to your real installation directory. The
EspritAppSuite.jar entry is obvious - it contains the whole EspritAppSuite software. The
jdbcdriver.jar stands for the actual JDBC driver software of your particular database.

 1.3 What's a DBObject?

A DBObject is a Java class, which models a database record. An instance of this class carries the
information of the record in member variables and knows by itself how to read/write from/to the
database (SELECT, INSERT, UPDATE, DELETE). The programmer uses a DBObject just like any
other Java object and needs not care about database specifica. Any SQL statements are dynamically
generated internally and not visible to the outside world (except in logging output).

 1.3.1 Object relational Mapping

A database table is represented by a particular subclass of the DBObject superclass. The
DBOCompiler generates the source code for such subclasses automatically derived from the meta-
information found in the database. There is a simple naming convention: the Java class-name is
equal to the table name just with a 'DBO_' prefix. A table called customer for example will be
represented by a DBObject subclass called DBO_customer.

➔ Note that you can consider the DBObject class as a representation of the database table and the DBObject instance
as a representation of a table record.

As the picture above indicates, you have got a simple one to one relationship between the tables in
the database and the Java objects representing them. This simple object view may be good enough
for most cases but note, that you are not restricted to this schema.

 1.3.2 Composed persistent objects

Be aware that DBObjects can be used as building blocks for constructing composed persistent
objects up to any complexity. How to do this is out of the scope of this document but you find
examples in the free sample Project EspritAppLab within the package de.esprit.applab.dbo.epart.

- 6 -

 1.3.3 DBObjects for database views

Not only database tables but also views can be compiled to a DBObject. A database view looks
similiar to a table but acutally executes an underlying SQL statement when you select records from
it. You can see views as an alternative way for constructing composed persistent objects. There is
only one problem with views: they haven't got a primary key which is needed for record updates. In
special cases a view would in fact be updatable if it only had a primary key (if for example a view
does not contain joins). In such cases you can 'fake' a primary key as described later.

There is one major advantage in using views instead of composed persistent objects: it's underlying
SELECT statement can be well tuned by the database administrator and thus will run with very
good performance. Composed persistent objects in contrast are much more handy and flexible for
the developer to work with.

 2 2 Creating the DatabaseCreating the Database

 3 3 Creating DBObjectsCreating DBObjects

The first step to working with DBObjects is of course to create them. You do this by running the
DBOCompiler as a batch job. The DBOCompiler needs a DBOTypeMapCredential object for
running, which contains all the information needed to create the DBObjects. In the package
de.esprit.workbench.dbo of the free EspritWorkbench project you find the EwbDBOCredential
which derives from DBOTypeMapCredential and adds the required compile information.

 You need to specify a the following parameters for compiling DBObjects. Mandatory parameters
are marked with an '*':

➔ setTargetDir(File) * Target output directory
This is the base directory where the gernerated DBObject subclass is copied to, typically the
source folder of your project. Note that below this target directory you will find the package
hierarchy as subfolders.

➔ setTargetPackage(String) * Target package name
This package name beeing used for the package statement in the gernerated DBObject subclass,
i.e. de.esprit.workbench.dbo.

➔ setUseTypeConventions(boolean) Use DBO-conventions for column type mapping
If true then the data type used for columns will be derived from the name of the column (only
applies if otherwise no clear mapping is achieved). The column-type naming conventions are
described below in this document.

➔ setRebuildExistingDBOs(boolean) Rebuild existing DBObjects only
If true then only such DBObjects will be recreated, which already exist in the output directory.
That way only those DBObjects are created which are actually needed. Otherwise DBObjects
will be created for all tables and views found in the database.

➔ setSchema(String) Defines a database schema
If a schema is defined, only those tables of this schema will be compiled. Otherwise only tables
of the database internal default-schema are compiled.

- 7 -

➔ addTableExcludePattern(String) Exclude tables from compiling
Allows for defining a reqular expression. All tables that match this expression will be exclude
from compilation. You may add multiple patters.

➔ setTranslationAppKey(String) Defines the application key for table/column translations
This allows for automatically translate table- and column-names in GUI input forms using the
translation system of the Esprit software.

➔ put(DBOColumnType, JavaColumnType) Define a column-type explicitely
Allows for defining a column-type explicitely. For instance if you got a CHAR column named
was_easy which you want to have represented as a Java boolean value in the according
DBObject, you can achieve it with this method.

Refer to the EspritWorkbench example EwbDBOCompile for how to run the DBOCompiler with the
EwbDBOCredential. And have a look to the freshly generated DBObjects in your target package.

➔ It is strongly recommended to recompile the DBObjects whenever the structure of the underlying database table has
been changed.

 3.1 How a DBObject looks like

As mentioned already each DBObject subclass that you have created with the DBOCompiler
represents a table in your database. Instances of them represent the table records. Compiling the
table customer for example results in a DBObject subclass called DBO_customer. Printing out the
full DBObject source code would be quite lengthy, therefore you are encouraged to take some time
for examining the Java source code of one you have created.

 3.1.1 Static methods

In a particular DBObject subclass you will find a set of static methods which typically perform table
oriented tasks. Methods like getPrimaryKeyCount(), getPrimaryKeys() etc. tell meta information
about the underlying database table. Other methods like createTable(), dropTable() etc. perform
table based actions in the database. There is also a set of static constants (in upper case letters)
representing the names of the table columns (just table meta information).

 3.1.2 Instance level methods

Furthermore you will find a set of instance level methods like dbInsert(), dbUpdate(), dbDelete()
etc. which perform record based tasks. There is also a set of member variables that represent the
record values. They are named exactly as the columns in your database table (in lower case letters
and just preceeded by a ‘$’ sign for making them unique) and have got a datatype that best matches
the real SQL type definition (see column type mapping below).

Reading a record from the database basically means: instantiating your subclass and setting the
member variables to values read from the database fields. Reading from the database requires an
SQL statement of course, which is internally created by the DBObject itself. So this is what the
DBObject superclass does for you: it hides the complexity of how to talk with databases. You won't
need to deal with SQL any more.

 3.1.3 Member variables

Note that the member variables are declared beeing private and thus you cannot access them
directly. Rather you will find a get$xxx() and set$xxx(…) method for each of them in order to read
or modify its value. Furthermore a DBObject has got an internal isDirty() flag that makes a guess
whether your DBObject is in sync with the database or not. This flag is automatically set, whenever
a set$xxx(…) method was called.

- 8 -

DBO_person p = new DBO_person(200); // read record from the database

String lastName = p.get$LastName(); // read a value

p.set$LastName("Schroeder"); // modify a value, object is dirty now

Once you have read the DBObject from the database it exists in your memory and reflects the state
of the record at the time it was read. If another user changes the record in the database you would
not know. Therefore you should not rely too much on the isDirty() flag - it's just a guess (but usefull
anyway). At any time you can refresh your object with the current database values using the
dbRehash() call, which cleans the dirty flag.

Note that in other persistency solutions calling a getter/setter method actually results in a read/write
from/to the database - which occasionally may result in serious performance problems. DBObjects
leave it up to you when database access happens - you call dbRehash() or dbUpdate() when you
want it to happen, giving you better control about performance.

 3.1.4 The master instance

Each DBObject subclass contains an internal singleton instance of itself, which is called the master
instance. You get a reference to the master instance as shown in this example:

DBO_customer master = DBO_customer.getMaster();

If you have a look to the DBO_customer.java source code you will find that most static methods
just delegate to the master instance, so it is mainly used internally. But you may also 'abuse' it for
your purposes. You will see a few examples later in this document.

 3.2 Column type mapping

One of the main problems in object relational mapping is how to find the Java datatype that matches
best your database datatype. For example in an Oracle database every datetime value is stored as a
DATE data type. But your application may want to see it as a Java Date, Time or Timestamp value
depending on it's actual meaning. So how to distinguish those?

 3.2.1 Available data types

Lets first see, which Java data types are supported on DBObjects. Here is a sample DBObject -
provided by the EspritAppSuite software - using all available types.

DBO_tnt_alltype a = new DBO_tnt_alltype();

a.set$Pk("1"); // Priamry key - always a String
a.set$TypeString("Test object");
a.set$TypeInt(Integer.MAX_VALUE);
a.set$TypeLong(Long.MAX_VALUE);
a.set$TypeFloat(Float.MAX_VALUE);
a.set$TypeDouble(Double.MAX_VALUE);
a.set$TypeBoolean(true); // boolean stored in a BOOLEAN database field
a.set$TypeBoolstr(true); // boolean stored in a CHAR(1) database field
a.set$TypeTime(new DBTime());
a.set$TypeTs(new DBTimestamp());
a.set$TypeDate(new DBDate());
a.set$TypeClob(new TestClob());
a.set$TypeBlob(new TestBlob());
a.dbInsert();

Note that storing time information is limited to the data types which JDBC offers: Date, Time and

- 9 -

Timestamp. In the example above we use DBDate, DBTime and DBTimestamp, which are special
implementations with improved toString() output an better compare behaviour.

 3.2.2 Column type mapping by naming conventions

The easiest way of getting a reasonable mapping between your database datatypes and the Java
datatypes is by defining a naming convention: If for example the fieldname of a SQL DATE field
ends with ‘_ts’ then it will be considered to be a Timestamp value. As described earlier the type-
mapping is done with the DBOTypeMapCredential class which is used as input for the
DBOComiler. The method setUseTypeConventions(true) activates the following naming
conventions:
Columname Java data type used
*_ts Timestamp
*_time Time
*_date Date
is_* boolean
use_* boolean
has_* boolean

 3.2.3 Using custom column type mapping

Unfortunately defining a naming convention is not sufficient or sometimes isn’t even possible
because the existing database tables are not allowed to be renamed accordingly. Furthermore there
are situations for instance where a RDBMS system does not support the BOOLEAN datatype.
People then use to store booleans as ‘T’ or ‘F’ characters in a CHAR(1) database column. How to
map those to Java booleans?

Another issue is the fact that often databases running in production environment are poorly
designed but not allowed to be changed anymore in order to avoid the risk of running applications
beeing unpredictably affected. For example you may find numeric values stored in SQL VARCHAR
columns, which of course you rather would like to treat as Java double values. In order to get a
‘clean’ and well defined mapping you can set up a column type mapping in the
DBOTypeMapCredential instance like this:

DBOTypeMapCredential

// Sample column type mapping file.
// Note that all entries are case-insensitive.

// the enter_time field (DATE) should be mapped as a Java Timestamp value
put("customer.enter_time", Timestamp.class);

// the preferred field (CHAR(1)) should be mapped as a Java boolean value
put("customer.preferred", boolean.class);

The valid Java types you can map to are:
boolean, int, long, float, double, String, Date, Time, Timestamp, Clob, Blob

Specific column type-map definitions of course have precedence over type-mapping conventions.

 3.2.4 Using primary keys

Primary keys, unlike attribute fields, are always of type String. One of the reasons for this is, that
they must be nullable. Another reason is that there are JDBC drivers which only accept String
values as primary keys.

The same is valid for foreign keys. A foreign key value of "0" for example would be a valid
reference pointing to an existing primary key in the target table. Whereas a foreign key value of null

- 10 -

means, that there is no such reference.

Not all datatypes make sense to be used as primary or foreign keys. The following sample
DBO_tnt_pktype (included in the EspritAppSuite software) has got a composed primary key that
includes all datatypes which are supported within primary keys:

DBO_tnt_pktype a = new DBO_tnt_pktype();

a.set$Pk("TestPK");
a.set$PkInt(Integer.MAX_VALUE.toString());
a.set$PkLong(Long.MAX_VALUE.toString());
a.set$PkFloat(Float.MAX_VALUE.toString());
a.set$PkDouble(Double.MAX_VALUE.toString());
a.set$PkBoolean(Boolean.TRUE.toString()); // stored in BOOLEAN database field
a.set$PkBoolsStr(Boolean.TRUE.toString()); // stored in CHAR(1) database field
a.set$PkTime(new DBTime().toString());
a.set$PkTs(new DBTimestamp().toString());
a.set$PkDate(new DBDate().toString());
a.set$Value("sample value");

a.dbInsert();

Please remember that all primary key values must be set as Strings.

 3.2.5 Primary/foreign key faking

As mentioned already there are databases out in production environment which are poorly desinged.
Occasionally you find tables which haven't got a primary key definition although they got a unique
index on a particular column. DBObjects however need a primary key in order to be capable to
update or rehash records. Therefore it is possible to 'fake' primary key as well as foreign key
definitions as shown in the AppLabDBCredential class in the free EspritAppLab project:

AppLabDBCredential

addFakedPrimaryKey(DBO_trainer_addr_view.TRAINER_ID);

addFakedForeignKey(DBO_trainer_addr_view.TRAINER_ID, DBO_trainer.TRAINER_ID);

As you see the method arguments are constants of an already existing DBObject. Thus for faking
keys you need a second DBObject compilation. A 'faked' primary key definition in the column type
map even overrides the real primary key definition in the database.

 4 4 Connecting to a databaseConnecting to a database

 4.1 Database credentials

Before working with DBObjects we must establish a database connection. Therefore you need to
provide four database connection parameters: driver, dburl, user and password. These parameters
are wrapped into a Credential object wich is passed to the DBObject.connect(...) method. There are
serveral ways to create the Credential object, depending on what way you perfer.

 4.1.1 Creating a credential

You may directly pass your connection parameters to the constructor of the Credential class. Here is
an example for accessing the Derby standard Java Database.

- 11 -

Credential cred = new Credential(
"org.apache.derby.jdbc.ClientDriver",
"jdbc:derby://localhost:1527/traindb;create=true",
"user1", // user
"user1" // password

);

 4.1.2 Reading credentials from the commandline

Usually it's more flexible if you let the parameters be specified from outside of your application
code. There is a DatabaseCommandLineParser that makes it easy to fetch the parameters from the
users command line input:

public static void main(String[] args) throws Exception {

DatabaseCommandLineParser p = new DatabaseCommandLineParser(Main.class, args);

Credential cred = p.getCredential();

}

This is how the command line arguments are expected by the DatabaseCommandLineParser:
-driver org.apache.derby.jdbc.ClientDriver
-dbUrl jdbc:derby://localhost:1527/espritdb;create=true
-user user1
-password user1

 4.1.3 Reading credentials from a file

The most flexible and recommend way is to store your connection parameters in a file and read the
credential information from there. This makes it reusable by other database tools as well:

try {
Credential cred = new Credential("C:/Databases/ espr itdb/espritdb.cred");
...

} catch (Exception e) {
// handle error

}

This is an expample how a credential file may look like:

espritdb.cred file:
##
Database credential
#
<

ndfDocVersion = "1.0"
ndfDocCreated = "2013-09-27 06:08:35"
ndfDocType = "DatabaseCredential"

>
@ DatabaseCredential {
<

jdbcDriver = "org.apache.derby.jdbc.EmbeddedDriver"
connUrl = "jdbc:derby:espritdb"
dbUser = "user1"
dbPassword = "user1"
dbSchema = null

minConns = 1 # min number of connections in pool
maxConns = 1 # max number of connections in pool

- 12 -

file:///databases/traindb/traindb.cred
file:///databases/traindb/traindb.cred
file:///databases/traindb/traindb.cred

loginTimeout = 10 # database login timeout in seconds
>

}
@ SystemProperties {

Note that the following system property definition is only used
if not already defined in the JVM. Thus a JVM option like
-Dkey=value always precede the value defined here!
<derby.system.home = "C:\Projects\EspritAppLab\dbmaster\derby">

}

 4.1.4 Advanced Credential parameters

Besides the pure JDBC connection parameters a Credential object may contain further optional
parameters like minConns, maxConns and loginTimeout, which are supported by the database
connection pool in the Esprit software.

 4.2 Establishing connections

 4.2.1 Establishing a single database connection

Once you got the Credential object you can use it to establish the database connection tike this:

try {
DBObject.connect(cred);

➔ If the connection fails, first check if your database server actually is running. Futhermore check the URL and
datbase login parameters - there may be a spelling mistake. Also make sure to use your real hostname or your IP-
address instead of localhost in your connection URL. Furthermore check whether you included the correct driver
jar-file of your database vendor in your CLASSPATH.

The above statement is actually a shortcut for this:

try {
DataSource cp = new DBConnectionPool(cred);
DBObject.setDataSource(cp);

Thus in fact you have opened a connection pool maintaining just a single database connection,
which is shared among all DBObject subclasses for accessing the database.

 4.2.2 Establishing a pool of database connections

You can open a pool of database connections by specifying a mincon and maxConn parameter in
your Credential object:

cred.setMinConns(10); // minimum number of connections requested
cred.setMaxConns(15); // maximum number of connections to grow up to
DataSource cp = new DBConnectionPool(cred);

This call initializes the DBConnectionPool with 10 initial connections and allows it to dynamically
grow up to 15 if needed. After having grown up the pool will automatically shrink down to 10 when
traffic gets less.

➔ The connection pool allows as many transactions running in prarallel as you have got connections. This means a
significant performance improvement in multi-threaded environments, in particular when the database host is a
multi-CPU machine.

Here is a typical complete source code snippet for starting a database application. Note the usage of
the convenience class DatabaseCLP which tries to get the Credential parameters for you by first

- 13 -

looking for a credfile argument (for reading credentials from a file); if that fails it tries to find the
-driver, -dburl, -user, -password, -mincon, -maxcon and -debug arguments (whereas the latter
three are optional). If the connection attempt fails, then an Exception is thrown.

public static void main(String[] args) throws Exception {
DatabaseCommandLineParser p = new DatabaseCommandLineParser(Main.class, args);
DBObject.connect(p);
/* Run your application code here */

}

Is that easy enough? The DBObject.connect(p) method fetches the required Credential object
directly from the DatabaseCommandLineParser. If command line parsing fails, an informative help
message is printed automatically. See the javadoc docu for more information.

 4.2.3 Closing the database connection

Before your application terminates it should cleanly close all database connections in order to free
up the database resources. This is how you do it:

DBObject.close(); // close the database connection

Actually this call is a shortcut for shutting down the underlying ConnectionPool. But by default it's
done in a quite brutal manner, because all currently running user-transactions will be interrupted
and rolled back immediately. You could do it more user by providing a shutdown-delay in
milliseconds. The special value 0 indicates: wait until all currently running user-transactions have
finished (new transactions are refused of course).

DBObject.close(5000); // close after a maximum wait of 5 seconds

 5 5 Working with DBObjectsWorking with DBObjects

 5.1 Selecting records from the database

 5.1.1 Selecting a single record

The following example shows how to select a particular record from the database. Once you got the
record you may print it using it's toString() method, which prints it's table name and primary key.
Note that the DBObject class implements the Dumpable interface - so it can dump it's full content
by calling the toDumpString() method. Furthermore it implements Serializable which makes it
transferable through streams (like the network).

For reading a particular object from the database you just need to pass a primary key value to the
constructor. A new DBObject is beeing instantiated by reading it's field values from the database. A
RecordNotFoundException is thrown if it cannot be found.

try {
DBO_customer c1 = new DBO_customer(10);
System.out.println("Found customer: "+c1);
System.out.println("Content: "+c1.toDumpString());

If the desired object has got a composite primary key you got to pass it as a String[] to the
constructor.

- 14 -

String[] primaryKey = {"1", "T255"};
DBO_trskill ts = new DBO_trskill(primaryKey);
System.out.println("Content: "+ts.toDumpString());

At any time you may check if a record still exists in the database (it could eventually have been
deleted by another user!). The exists() method just checks if it still can be found in the database.

boolean isThere = ts.exists();

You may at any time refetch the object's attributes from the database (it could have been changed by
another user!) using the dbRehash() call. Any unsaved previous settings done by you will be lost of
course. After a rehash the isDirty() method will return false because now the object is known to be
in sync with the database.

ts.dbRehash();
System.out.println("Object rehashed from database: "+ts.toDumpString());

 5.1.2 Selecting multiple records by condition

This example shows how to query a set of records by a given condition whereas the condition can
be any valid SQL condition clause. If the condition is null then all records of the table are read.

SqlCondition condition = new SqlCondition();
condition.addEqual("course_type", "DB");
DBO_course[] courses = DBO_course.select(condition);

for (int i = 0; i < courses.length; i++) {
System.out.println(courses[i]); // prints table name and primary key

}

It is strongly recommended to use a type-safe notation in your condition strings. The condition
above could better be written as follows:

SqlCondition condition = new SqlCondition();
condition.addEqual(DBO_course.COURSE_TYPE, "DB");

➔ All column-names are available as static public constants within the particular DBObject subclasses. Using them
makes your code safe against column renaming in the database.

 5.1.3 Iterating through query results

Note that the select(...) method returns an array of the loaded records. This is quite convenient, but
there is a potential problem: what if the number of records is so big, that it would exhaust your
memory resources? In this case you may prefer to iterate through the records using the
RecordIterator. The difference is that not all records will be in memory at the same time, but rather
they are fetched from the database in chunks while iterating through them.

SqlCondition condition = new SqlCondition();
condition.addEqual(DBO_course.COURSE_TYPE, "DB");

SqlOrder order = new SqlOrder(DBO_course.COURSE_NAME);
DBObject master = DBO_course.getMaster();

- 15 -

RecordIterator<DBO_course> it = new RecordIterator(master, condition, order);
while (it.hasNext()) {

DBO_course course = it.next();
System.out.println(course.get$CourseName());

}
DBUtil.close(it);

Normally the RecordIterator instance automatically closes it's underlying database ResultSet when
all records have been read. But you must invoke it's close() method by yourself if you break the
iteration before reaching the end.

 5.1.4 Sorting records

You can enforce any particular ordering of the returned records by using a SqlOrder object for
providing an SQL order clause to the select(...) call or to the RecordIterator's constructor:

SqlOrder order = new SqlOrder();
order.add(DBO_course.COURSE_TYPE, false); // descending
order.add(DBO_course.COURSE_NAME, true); // ascending

DBO_course[] courses = DBO_course.select(order);

In this case the returned records are ordered descending by the cours_type field and subordered by
the course_name field. The order string can be any valid SQL order clause of your database.

Sorting is done by the database server and is somewhat expensive, in particular if the number of
records is high. Therefore you should request sorting only when you actually need it.

➔ Note that if you don't specify an order clause then there is a default ordering by primary key (only if one exists of
course). If you don't want sorting at all you should explicitely pass a null as an order argument.

 5.1.5 Monitoring asynchroneous record loads

Occasionally there are database queries which take so much time (due to slow database, slow
network or heavy load) that the user might want to cancel it. This means that the database query has
to run asyncroneously, not blocking the users GUI, so that he is still able to press the Cancel-button.
We can achieve this by using a DBLoadMonitor in conjunction with the DBLoadThread. You can
write your own sublclass MyLoadMonitor deriving from AbstractDBLoadMonitor and override the
only required method loadedRecord(DBPersistent). The latter method is called each time a record
has been loaded by the asynchroneously running DBLoadThread. The DBLoadMonitor can be
cancelled any time by calling it's cancel() method, which in fact halts the DBLoadThread. Here is
an example:

MyLoadMonitor monitor = new AbstractDBLoadMonitor() {
public boolean loadedRecord(DBPersistent record) {

super.loadedRecord(record); // counts the records
System.out.println("Loaded record: "+record);

}
};

SqlCondition condition = new SqlCondition("course_type = 'DB'");
SqlOrder order = new SqlOrder("course_name");
DBRecord master = DBO_course.getMaster(); // the type of record to be loaded

// Load records asynchroneously
new DBLoadThread(monitor, master, condition, order).start();

Util.sleep(1000); // let it run a while
monitor.cancel(); // cancels loading, the DBLoadThread will die

- 16 -

int count = monitor.getRecordCount(); // tell how many records had been loaded

If a DBLoadMonitor is used it will be responsible for collecting and processing the loaded records.

➔ It is absolutely legal to run several load-threads on different tables at the same time. But you cannot expect better
performance unless you create a DBConnectionPool with more than one connection. You can run as many database
actions in parallel as you have got connections in your pool.

 5.1.6 Using more complex SQL conditions

SQL conditions can become very lengthy and tricky. In particular using brackets in mixed AND/OR
conditions is error prone and must be checked very carefully. The SqlCondition class helps you to
avoid typical errors and makes your conditions more easy to write and to maintain. Here is an
example:

SqlCondition c = new SqlCondition();
c.add("id > 0");
c.and("type = 5");
c.or("owner = 8");
System.out.println(c);

This results in a condition string as follows:
(id > 0 AND type = 5 OR owner = 8)

Mixing AND and OR operators like this is dangerous and you cannot be sure whether the database
server understands what you mean. Lets improve this:

SqlCondition c1 = new SqlCondition("id > 0");
SqlCondition c2 = new SqlCondition("type = 5");
c2.or("owner = 8");
c1.and(c2);
System.out.println(c1);

This results in a better condition string looking like this:
(id > 0 AND (type = 5 OR owner = 8))

As you see you can nest conditions to any complexity and the Conditon class builds the real SQL
string for you with the brackets correctly set.

➔ Writing conditions is the only place where you still got to cope with SQL. Be aware that the SQL syntax is typically
RDBMS specific. You are strongly recommended to remain as platform independent as possible. For example when
comparing values with the SQL not-equals operator use '<>' instead of '!=' because the latter is not supported by all
RDMBS systems.

 5.2 4.2 Inserting new records

 5.2.1 How to instantiate and insert a record

Creating a new DBObject is easy - just instantiate one with an empty constructor. Note that the
newly created DBObject does NOT exist in the database yet unless you call it's dbInsert() method.
The isDirty() method tells you whether the object is known to be in sync with the database. The
newly created DBObject is dirty but it will become clean when the database insert was successfull.

➔ Note that prior to calling dbInsert() all not-null attributes must be set to proper values!

- 17 -

DBO_customer c = new DBO_customer(); // creates an empty object
boolean ok = c.isDirty(); // is true, because not in database yet!

c.set$CustomerId(10); // assign primary key
c.set$Lastname("Reich");
c.set$Company("Cash & Co.");
c.dbInsert(); // inserts the record into the database table

boolean ok = c.isDirty(); // is false now, because in sync with database!

 5.2.2 Using the master instance for inserts

When doing mass-inserts, it is would be more efficient to reuse the same DBObject instance for
each insert instead of creating a new one every time. Using the master instance for this would be a
perfect solution. Just before you perform the insert you should call clearValues() in order to nullify
all values from the previous insert.

DBO_customer c = DBO_customer.getMaster(); // get the static master instance
c.clearValues(); // ensure all member variables are nullified

c.set$CustomerId(10); // assign primary key
c.set$Lastname("Reich"); // and attribute values
...
c.dbInsert(); // inserts the record into the database table

It is perfectly legal to 'abuse' the master instance for whatever you like, but be aware that it is also
used internally. You may consider it to be a DBObject for temporary usage only.

 5.2.3 Automatic primary key generation

If the primary key exists already in the database the dbInsert() will fail and throw an Exception.
Note that usually you won't have to assign a primary key value (at least if the primary key is a
simple integer value). If no PK-value is given, then it will be calculated automatically:

c = new DBO_customer(); // creates an empty object
c.set$Lastname("Arm");
c.set$Company("Pech & Panne");

c.dbInsert(); // inserts a record with the next available primary key

The primary key is calculated by a 'select max(customer_id) from customer' in this case, which is
OK for a single insert, but may raise to a performance problem on mass-inserts. For increasing the
insert-performance you may consider to use the PrimaryKeyFactory class, which manages the
primary keys with a much better performance.

 5.2.4 Using a primary key factory

This example shows how to use a PrimaryKeyFactory for high performance key-generation on
record inserts. For instantiating it you need to tell what tables it should manage by passing an array
of DBObjects to it's constructor (in this example only one). When the factory initializes it will find
out the current maximum key value for each managed table and then calculates the new keys based
on that.

➔ The PrimaryKeyFactory can only manage tables that have got a single-column numeric primary key. A table must
be managed by only one PrimaryKeyFactory at a time.

- 18 -

DBObject[] tables = new DBObject[] {
DBO_customer.getMaster()

};

DBConnectionPool cp = DBObject.getConnectionPool();

PrimaryKeyFactory keyFac = new PrimaryKeyFactory(cp, tables);
DBObject.setPrimaryKeyFactory(keyFac); // make DBObjects using it

DBO_customer c = new DBO_customer(); // creates an empty object
c.dbInsert(); // inserts record fetching the primary key from the PK-factory

➔ Once a primary key value has been requested from the PrimaryKeyFactory this value is actually consumed - even if
the actual record insert may have failed due to a constraint violation.

 5.2.5 Using a factory for setting default values on insert

Often it is required to provide field values for particular columns automatically when the record is
inserted. Most database systems provide a way to define such default values, but some don't. In
order to remain platform independent you are encouraged to use the InsertDefaultFactory class
which provides (or calculates) default values for you. Let's suppose we want to set the
customer.enter_ts column automatically to the current timestamp and give a default email-address
on each new customer record. Here is how you can achieve that:

String dboPkg = "de.esprit.dbobject.demo.dbo");

InsertFactory insFac = new InsertDefaultFactory(dboPkg);
insFac.put(DBO_Customer.ENTER_TS, CurrentTime.CURRENT_TIME); // evolves to "now"
insFac.put(DBO_Customer.EMAIL, "services@tntsoft.de");

DBObject.setInsertFactory(insFac); // set the insert-defaults factory

DBO_customer c = new DBO_customer();
c.dbInsert(); // automatically fetches values from the InsertDefaultFactory

The InsertDefaultFactory is filled with values just like a HashMap using the table.column as a key.
When the factory is present it will be scanned for proper values each time a record is inserted. The
special value CurrentTime.CURRENT_TIME evolves to the current datetime value, no matter if it is
a Date, Time or Timestamp field. For providing a particular timestamp you may have put a
particular Timstamp object as value.

The InsertDefaultFactory needs to know in which package your DBObjects are, because it uses the
Java introspection mechanism in order to find out what datatype a particular field has and if it
matches with the datatype provided by you.

➔ Note that the InsertDefaultFactory implements the InsertFactory interface. You could provide your own
implementation which calculates insert-default values your way - no matter how complex that is.

Sometimes it is desired to store the insert-default-values in a database table rather than hardcoding
them in the program. The InsertDefaultFactory's method loadFromDatabase() reads the default
value definitions from a database table called insert_def. You will have to create this table before
using this feature, which you can easily do with the call:

DBO_insert_def.createTable();

 5.3 Updating records

You may easily change a DBObject just by invoking any set$xxx(…) method on it. After the
assigment of new values the object is out of sync with the database and isDirty() will return true.

- 19 -

Now you may call it's dbUpdate() method in order to write the changes to the database.

➔ Only attributes should be canged! Do NOT attempt to assign a new primary key value - this would result in
updating a different record in the database. DBObjects and database records match by their primary keys. Updating
is not possible if no primary key exists.

DBO_customer c = new DBO_customer("10");
c.set$Lastname("Huber"); // change the name
c.set$Phone("089/123456"); // change phone number
c.isDirty() // now returns true because object was modified

c.dbUpdate(); // write changes to the database
c.isDirty() // now returns false because in sync with database again

 5.4 Deleting records

 5.4.1 Deleting a single record

In order to delete a single record you just call the DBObject's dbDelete() method. After a successfull
deletion the object has changed to a dirty state which can be checked with the isDirty() method.

DBO_customer c = new DBO_customer("10");
c.dbDelete(); // deletes the record from the database table
c.isDirty(); // returns true because no more in sync with database

➔ It is NOT an error when the DBObject could not be found in the database for deletion. It may have been deleted by
another user already, which is considered to be a legal situation.

 5.4.2 Deleting multiple records by condition

You also can delete many records by condition by using the static delete(...) method.

SqlCondition condition = new SqlCondition("enter_date < '2003-01-01'");
int deletedRecs = DBO_customer.delete(condition);

Hereby the number of actually deleted records is returned. But be aware that there is a potential
problem doing it this way: if the number of records is big your database system is likely to run into
a long transaction - performing a subsequent rollback, which would result in a huge waste of
computer power. Therefore we strongly recommend to either delete each record individually or in
well defined chunks in order to remain safe and robust:

DBO_customer[] custs = DBO_customer.select(condition);
for (int i=0; i < custs.length; i++) {

custs[i].dbDelete();
}

Because DBObjects use prepared statements internally single-record-deletes are very fast! But there
is still a problem using this methodology: a query returning a huge number of records may exhaust
your memory resources before you even can start the deletion. This is the case where you should
use primary-key-only selects as described below.

- 20 -

 5.4.3 Primary-Key only selects

Lets think about writing an archiving tool that deletes all records older than a particular timestamp.
For finding all 'old' records you run a select() with an appropriate condition, but you cannot tell how
many records will be hit - it may be a quite huge number. Thus just reading the records may exhaust
your memory resources.

In order to save memory it is possible to enforce only the primary key to be read from the database -
skipping any attribute values. That way, you will need much less memory and much less data will
be transferred through the network. Having only got the primary key value is still enough
information for deleting the record with a dbDelete() call.

Note that the readPrimaryKeyOnly-flag does NOT affect single records reads. Thus a dbRehash()
call will always complete your DBObject with attribute values. The same is valid for instantiating
DBObjects using one of its constructors like: new DBO_tnt_logmsg(1234);

SqlCondition condition = new SqlCondition();
condition.add(DBO_tnt_logmsg.ENTER_TS+ " < '2003-11-01 12:00:00'");

try {
DBO_tnt_logmsg.getMaster().setReadPrimaryKeyOnly(true);
DBO_tnt_logmsg [] recs = DBO_tnt_logmsg.select(condition);
for (int i = 0; i < recs.length; i++) {

recs[i].dbDelete();
}

} catch (Exception e) {
// handle error

} finally {
// Do NOT forget to reset the flag after reading
DBO_tnt_logmsg.getMaster().setReadPrimaryKeyOnly(false);

}

 5.5 Forced insert and update

There are cases where you just want to store a record in the database - not worrying about whether
it exists already or not. If it exists, it should be updated, if it doesn't, it should just be inserted. This
is exactly what the forceInsert() and forceUpdate() methods provide. Lets suppose we have got an
object like this:

DBO_customer c = new DBO_customer();
c.set$Customer_id("1001");
c.set$Lastname("Buesch");
c.set$Company("EsprIT-Systems");
c.set$Email("rainer.buesch@esprit-systems.de");

The forceUpdate() method tries to update the record. If it fails because the record does not exist yet
an insert is performed instead.

c.forceUpdate(); // try to update - if it fails => insert

The forceInsert() method tries to insert the record. If it fails because the record exists already it
performs an update instead.

c.set$Email("service@tntsoft.de");
c.forceInsert(); // try to insert - if it fails => update

- 21 -

mailto:service@tntsoft.de

Both the forceInsert() and forceUpdate() methods lead to the same result. Which one to use depends
on which is the more likely case you expect. If you expect that in most cases the record might exist
already you would prefer the forceUpdate() method due to better performance.

 6 6 Running transactionsRunning transactions

 6.1 How to use transactions

There are cases where you need to perform a group of database changes all of which must succeed.
If one of them fails all previous changes have to be undone. This is what database transactions do
for you. DBObject's support transactions with three static methods: begin(), commit() and
rollback().

➔ A DBObject.begin() must be followed by eiter a DBObject.commit() or DBObject.rollback(). You typically use a
try-catch notation to ensure this. Forgetting to finish a transaction is a fatal programming error!

The following example shows how to insert 'mother' and 'child' records into two tables which have a
foreign key relationship. A new course is inserted and an according new skill is added for all
trainers. The whole procedure is done in a single database transaction which is rolled back if any of
the inserts fails.

Try {
DBObject.begin(); // start a transaction

DBO_course tc = new DBO_course();
tc.set$Course_id("T201");
tc.set$Course_name("Database Design");
tc.set$Days(3);
tc.dbInsert();

DBO_trainer[] trainers = DBO_trainer.select();
DBO_trskill skill = null;

for (int i=0; i<trainers.length; i++) {
skill = new DBO_trskill();
skill.set$CourseId(tc.get$CourseId()); // primary key
skill.set$TrainerId(trainers[i].get$TrainerId()); // primary key
skill.set$PrefGrade(1);
skill.dbInsert();

}

DBObject.commit(); // commit the transaction

} catch (Exception e) {
Util.error(this, "Transaction failed", e);
DBObject.rollback(); // transaction must be rolled back!

}

 6.2 Running nested transactions

Database systems do typically not allow to nest transactions. Thus after a BEGIN the database
expects a COMMIT or ROLLBACK, but will not accept a second BEGIN. This is somewhat
inconvenient for you as a programmer because when you open a transaction and then call a method
on any object you probably do not know whether within that method again a transaction is opened
or not.

Anyway DBObjects support nested transactions, so that you need not worry about. Nesting works
as follows: If a thread calls the DBObject.begin() method twice the system will discover, that it
already is within a transaction and just keeps track of the nesting depth. A subsequent

- 22 -

DBObject.commit() call will decrease the nesting depth. If the nesting depth is back to zero then the
real database COMMIT is performed. A DBObject.rollback() call will allways break the transaction
at any nesting level and perform the real database ROLLBACK immediately.

Here is an example using nested transactions. Note that the Resistor class is a ComposedRecord and
it's dbUpdate() method in fact updates several internally managed DBObjects within a transaction -
this is where the nesting comes in.

Try {
DBObject.begin();

DBO_tnt_logmsg l = new DBO_tnt_logmsg();
l.set$Message("Changed resistor value");
l.dbInsert();

Resistor r = new Resistor("123"); // read by primary key
r.setOhmValue(100); // is a ComposedRecord field
r.setTolerance(2); // is a ComposedRecord field

// This runs in a nested transaction within the Resistor object
r.dbUpdate();

DBObject.commit(); // end of nested transaction

} catch (Exception e) {
DBObject.rollback();

}

 6.3 Running multiple transactions in parallel

DBObject transactions are thread safe - thus many threads may call the DBObject.begin() method in
order to start a transaction. If there is only one database connection available in the underlying
DBConnectionPool the first thread who starts a transaction will block it until his transaction has
been finished by either DBObject.commit() or DBObject.rollback(). Other threads will have to wait.

If however your DBConnectionPool has got several connections available other threads may run
their transactions in parallel.You can run as many transactions in parallel as you have got
connections in the pool.

➔ Note that you will see the best performance if your database host is a multi-CPU machine, because then it is
possible that transactions run in parallel on several CPUs at actually the same time.

 7 7 Multiple database connectionsMultiple database connections

 7.1 Connecting to multiple databases

The DBObject superclass allows for setting a DBConnectionPool instance. This instance is shared
by all DBObjects for performing database access. At any time you can easily replace this instance
by another one which is connected to a different database (even on a RDBMS system of a different
vendor). That way you can easily read a record from one database and write it back to another one.

 7.2 Database cross copy example

This example shows how to copy DBObjects across RDBMS systems of different vendors. For
example lets move all logging records older than a particular date from an Informix database to an
Oracle database:

- 23 -

try {
// Read the connection params for both Oracle and Informix
Credential oraCred = new Credential("C:/credentials/oracle.cred");
Credential ifxCred = new Credential("C:/credentials/informix.cred");

// Create a ConnectionPool for both Oracle and Informix
DataSource oraCP = new DBConnectionPool(oraCred);
DataSource ifxCP = new DBConnectionPool(ifxCred);

// Lets read the records from the Informix database
DBObject.setDataSource(ifxCP);

SqlCondition condition = new SqlCondition();
 condition.add(DBO_tnt_logmsg.ENTER_TS+" < '2003-06-01 12:00:00')"

DBO_tnt_logmsg[] recs = DBO_tnt_logmsg.select(condition);
DBO_tnt_logmsg r;

for (int i=0; i<recs.length; i++) {
r = recs[i];
try {

DBObject.begin(); // starts a transaction on Informix
r.dbDelete(); // deletes from the Informix database

DBObject.setDataSource(oraCP);
r.dbInsert(); // inserts into the Oracle database

DBObject.setDataSource(ifxCP);
DBObject.commit(); // commits the transaction on Informix

} catch (Exception e) {
DBObject.setDataSource(ifxCP); // reset to Informix
DBObject.rollback(); // rolls back on Informix

}
}

} catch (Exception e) {
Util.error(this, e);

}

Moving from one database to another is just as easy as switching the DBConnectionPool. Be aware
that the transaction shown above runs on the Informix system only. If the INSERT into the Oracle
database fails then the transaction on the Informix database is rolled back and leaves the data
unchanged. That way we have got a safe data transfer.

 7.3 Conversion between different table structures

The example above requires the tables on Informix and Oracle to have exactly the same structure. If
this is not the case you need to convert the Informix record into an Oracle record by writing a
simple conversion method that copies the values of interest - like this:

private DBO_ora_record toOracleRecord(DBO_ifx_record i) {
DBO_ora_record o = new DBO_ora_record();
o.set$RecId(i.get$RecId());
o.set$EnterTs(i.get$EnterTs());
...
return o;

}

Of course you are not limited to two database systems. This way of interfacing databases is as easy
as it can be if you compare it with other ways people typically use to do it: unloading data into a file
from one system and uploading it from the file onto another system.

- 24 -

file:///credentials/informix.cred
file:///credentials/oracle.cred

 8 8 Importing/Exporting dataImporting/Exporting data

DBObjects serve as data container objects representing records read from the database. But they
also contain meta information which can be used to present the data in various formats like HTML,
XML or UNL.

 8.1 Formatting output

The DBObjectSuite software contains paritcular writer classes like DBOHtmlWriter and
DBOXmlWriter, both derived from TagWriter which create tag-based output for you. Tag's can be
opened recursively with an unlimited nesting depth.

 8.1.1 Creating HTML output

When you use DBObjects as persistency layer for web applications (based on Servlets), then you
can use the DBOHtmlWriter class for writing their content in a HTML table format. The following
code snipplet could easily be used from within a servlet:

DBObject master = DBO_trainer.getMaster();
PrintStream ps = System.out;

try {
DBOHtmlWriter w = new DBOHtmlWriter(ps)
w.openTag("html");
w.openTag("body");
w.openTable(master);

DBObject[] recs = (DBObject[]) master.dbSelect();
for (int i = 0; i < recs.length; i++) {

w.writeDBObject(recs[i]);
}

w.closeTable();
w.closeTag(); // body
w.closeTag(); // html
w.close(); // flushes and closes the writer

} catch (Exception e) {
// handle error

}

This example writes the content of the selected DBObjects out to the given PrintStream (which of
course could be a ServletOutputStream) in a default HTML table format. For customizing the table
look you can easily create your own MyDBOHtmlWriter that extends from DBOHtmlWriter and
overrides the getTableAttributes() method for returning different table properties. Refer to the
javadoc API docu for details.

 8.1.2 Creating XML output

It is getting more and more common to exchange data with other systems using the XML format.
Here is an example how you can use the DBOXmlWriter class for generating XML output from the
DBObject's record information.

DBObject master = DBO_trainer.getMaster();

PrintStream ps = System.out;
try {

DBOXmlWriter w = new DBOXmlWriter(ps);
w.setWriteEmptyTags(true);
w.openTag("courses");

- 25 -

DBO_course[] courses = DBO_course.select(null);
for (int i = 0; i < courses.length; i++) {

w.writeDBObject(courses[i]);
}

w.closeTag(); // courses
w.close(); // flushes and closes the writer

} catch (Exception e) {
// handle error

}

Feel free to create your own MyDBOXmlWriter class deriving from DBOXmlWriter that customizes
any behaviour as needed.

 8.2 Loading/Unloading data with UNL

The UNL format is used for exporting database data into ASCII files. A table record is represented
as a line of text whereas the various field values are separated by a special character (by default '|').
This format does not store any meta information like column names, just pure data only. Obviously
binary large objects cannot be stored that way and are just treated as empty fields.

See also: Tools for Exporting/Importing data in UNL format

 8.2.1 Writing UNL output

The DBOUnlWriter class allows for writing UNL output directly from a DBObject instance. The
following example reads the table data from the database and extracts it into a file in UNL format.

DBOUnlWriter wr = new DBOUnlWriter("C:/temp/trainer.unl");
wr.writeRecords(DBO_trainer.select());
wr.close();

The resulting output file looks like this: C:/temp/trainer.unl
1|Mary|Poppins||||
2|Harry|Hirsch||||

As you can see the fields are separated by a special character (by default '|') which you can change
with the setFieldSeparator(...) method. The number of separators matches the number of fields. If
there is no information found between two separators it's considered to be a null value.

Note that a field value may contain the field separator character by incidence. In this case it will be
quoted with a '\' in the output in order to mark it as a non-special character.

➔ All data is written in a neutral format - no localization is done! Therefore floating point numbers use a '.' as decimal
separator, a date is formatted like yyyy-MM-dd etc.

 8.2.2 Reading UNL input

The DBOUnlReader class allows for reading UNL input and converting it to DBObject instances.
The following example reads the UNL file that was just written in the previous chapter. It parses the
UNL data line by line and prints the resulting DBObjects to the system console.

DBObject master = DBO_trainer.getMaster();
DBOUnlReader reader = new DBOUnlReader(master, "C:/temp/trainer.unl");
DBObject record;

- 26 -

file:///Temp/trainer.unl
file:///Temp/trainer.unl

while (reader.hasNext()) {
record = reader.next();
System.out.println(record.toDumpString());

}

reader.close();

As you see in the example there is a DBObject master instance passed to the constructor. Thus all
resulting DBObjects will be instances of that type and be castable as such. Once a DBObject is read
that way it's easy to insert it into a database table by just calling it's dbInsert() method.

➔ Note that the number of fields in the UNL file must match the number of fields of the master DBObject, otherwise
an Exception is thrown on parsing.

 8.2.3 Handling UNL parsing errors

Lets suppose you received an UNL file containing records which you have got to insert into your
database table. Occasionally it happens that data are not clean. For instance a date value may be
formatted wrong beeing not parsable. Such bad records need manual rework and should be
separated from the good ones. The DBOUnlReader povides an easy way for doing this:

reader.setViloationOutput("C:/temp/violation.unl");

When the violation output file is defined, then all non-parsable input lines are written into it. Each
violation record is followed by an additional comment line telling details about the error. After
having fixed the problems manually you can use the same file as input for another try.

 9 9 Special featuresSpecial features

 9.1 Comparing DBObjects

 9.1.1 Checking equality of primary keys

DBObjects can be compared using their equalPrimaryKeys(...) method, which is in fact the same as
what the equals(...) method does. Two DBObjects are defined to be equal when all their primary key
values are not null and equal. Attributes are not checked. If the DBObject hasn't got a primary key
the equality check always returns false. Lets compare a few DBObjects:

DBO_customer c1 = new DBO_customer(1000);
DBO_customer c2 = new DBO_customer(1000);

boolean isSame = c1.equals(c2); // evaluates to true

c2 = new DBO_customer(1111);
boolean isSame = c1.equals(c2); // evaluates to false

 9.1.2 Checking equality of attributes

Sometimes it is usefull to check whether two DBObjects have got identical attributes even if they
have got different primary keys. You can do this using the equalAttributes(...) method:

boolean hasSameAttributes = c1.equalAttributes(c2); // checks attributes only

Unlike primary key values two attribute values are considered to be equal if both are null.

- 27 -

 9.1.3 Using Comparable implementation

Note that DBObjects also implement the standard Comparable interface. Lets compare them using
their Comparable implementation:

int cmp = c1.compareTo(c2); // -1 because key of c2 is bigger then key of c1
cmp = c1.compareTo(c1); // 0 because both got the same primary key

You may use the Java Collection API in order to sort records as follows:

List list = new ArrayList();
list.add(c1);
list.add(c2);

Collections.sort(list); // sorts the list by using Comparable implementation

 9.2 Table oriented actions

A DBObject subclass represents a table in the database. Nevertheless somebody may have dropped
the underlying database table while your DBObject still exists in memory. Any try to access it
would certainly fail.

 9.2.1 Checking table existence

You may want to check if the real table still exists with the static existsTable() method.

boolean exists = DBO_tnt_logmsg.existsTable(); // false, because does not exist

 9.2.2 Creating the table

Because the DBObject has full knowledge about the table meta data it is capable to reconstruct the
missing database table by it's own even including primary/foreign key relationships.

DBO_tnt_logmsg.createTable(); // creates the table in the database
boolean exists = DBO_tnt_logmsg.existsTable(); // true, because now exists

The actual 'create table...' statement looks quite different on different RDBMS systems - these
differences are handled internally by the by DBConnectionPool which uses different RdbmsSupport
objects depending on which RDBMS it is connected to.

If the table has foreign key definitions, we must also create those. For doing this any referenced
table must actually exist already in the database. Thus a method call like the following is usually the
last one after having created all database tables:

DBO_tnt_logmsg.createForeignKeyConstraints();

 9.2.3 Dropping a table

Dropping the table from the database is quite easy. Be aware that all data in the table will be lost of
course.

DBO_tnt_logmsg.dropTable();
boolean exists = DBO_tnt_logmsg.existsTable(); // false, because it's gone

- 28 -

➔ Note that dropping a table is a very different database operation than deleting all records from the table. It's much
faster and there is no risk to run into a long transaction.

 9.2.4 Counting records in a table

You can easily find out the number of records in a particular table by invoking the static
countRecords() method. Internally the DBObject performs a highly performant key-only select on
the primary key index. If the table hasn't got a primary key the count would be much more
expensive.

int numRecs = DBO_customer.countRecords(); // returns number of records

There is a second countRecords(...) method which accepts and SqlCondition as argument and only
counts the records, that match the given condition. So we can find out easily whether a customer
with a particular name exists already in the database:

SqlCondition cond = new SqlCondition();
cond.addEquals(DBO_customer.NAME, ”EsprIT-Systems”);
int numRecs = DBO_customer.countRecords(cond); // returns number of matches

➔ For executing the above statement with good performance it is hardly recommended that the search column should
be indexed in the database.

 9.3 Using database schemas

Database users normally are not much aware of database schemas. When a user connects to the
database there is always a default-schema active and you can access your tables like this:
>> select * from hobbies;

But there are cases where you want to access a table in another user's schema. You then have to use
select statements like this in order to see for example TOM's table:
>> select * from "TOM".hobbies;

Setting the schema in the DBObject class does exactly this for you.

DBObject.setSchema("TOM");

After this call all DBObject subclasses will prepend the schema name to the table name whenever a
table is accessed.

➔ "TOM".hobbies and hobbies are different tables in the database, but we require them to have exactly the same
structure. Creating equally named tables with different structures in different schemas would anyway be a good way
to confuse everybody including yourself.

You can switch back to the default schema with:

DBObject.setSchema(null);

 9.4 Storing zero and blank values

 9.4.1 Storing empty strings

Usually it is considered to be unintended to store a string only consisting of whitespaces in a
database CHAR field. Therefore String values are trimmed when they are read/written from/to the

- 29 -

database. The default behaviour of DBObjects is that pure white-space-strings are treated as null
values.

But there are cases where it in fact may be intended to store just a a blank character or to read
leading and trailing blanks of a field (although you are not encouraged to do this). You can achieve
this with these calls:

DBObject.setTrimStringsOnRead(false); // default is true
DBObject.setTrimStringsOnWrite(false); // default is true

 9.4.2 Storing numeric zero values

A DBObject uses an Java int variable to model a database INTEGER column (long, float, double
respectively). The INTEGER database type however makes a difference between a NULL and a 0
value, which is not possible with Java int variables. Using the Integer class would solve this
problem but to the high cost of memory and performance. As a compromise DBObjects let you
determine whether a numeric zero should be stored as a NULL or as a 0 value.

DBObject.setStoreZeroAsNull(true); // default is false

Note that this distinction does not affect primary or foreign key columns because those are always
modelled as Strings and thus are nullable anyway.

 9.5 Logging

 9.5.1 Using a custom Logger

DBObjects report logging information to a built-in default LogSupport, which just prints to the
system console. You may supply your own LogSupport as shown below:

DBO_customer c = new DBO_customer();
c.update(); // fails ==> watch message of default error handler on console

DBObject.setErrorLogger(new MyErrorLogger()); // Set a custom log handler
c.update(); // fails ==> watch message of custom error handler on console

DBObject.setErrorLogger(null); // switches logging off totally

The MyErrorLogger is a class that implements the LogSupport interface. Here is an example for an
implementation. Note that you are free to implement it your way.

public class MyErrorLogger extends LogSupportAdapter {
public MyErrorLogger() {

super("DBO");
}
public void logInfo(Object caller, String msg) {

super.logInfo(caller, "#DBO# "+msg);
}
/* override all other logXX methods accordingly */

}

 9.5.2 Switching off messages

Somtimes it is desired not to see any error or info messages at all. Therefore you can use the
DBObject.setSilent(true) call for suppressing message reporting, which in fact is a shortcut for
setting the ErrorLogger to null.

- 30 -

DBObject.setSilent(true); // no messages are reported at all

Setting the silent mode back to false will reinstall the previous ErrorLogger.

 9.5.3 Printing different LogLevels

DBObjects internally use the logging API provided with this EspritAppSuite software. You may
increase the verbosity of the output by exlicitely setting the LogLevel:

DBObject.getErrorLogger().setLogLevel(LogLevel.LOG_VERBOSE); // Make it telling more

 10 10 Example partlist programExample partlist program

This sample program demonstrates the usage of DBObjects for data extraction. It finds out all parts
of a particular car (car table), counts the number of parts (part table) that comprise the car and
summarizes it's prices (which are stored in the stock table).

public class Partlist {

public Partlist(String carId) throws Exception {
DBO_car car = new DBO_car(carId);

// find all parts of this car in the part table
SqlCondition cond = new SqlCondition();
condition.add(DBO_part.CAR_ID, car.get$CarId());

DBO_part[] parts = DBO_part.select(condition);

if (parts.length == 0) {
System.out.println("No parts found for car: "+car);
return;

}

// Let's step through the partlist and find out the part
// prices which are stored in the 'stock' table.
DBO_part part;
DBO_stock stock;

int totParts = 0;
double totPrice = 0;

for (int i=0; i<parts.length; i++) {
part = parts[i];

// Note that the stock table has a composed primary key
String[] key = {part.get$SupplierId(), part.get$StockId()};
stock = new DBO_stock(key);

totParts += part.quantity;
totPrice += stock.get$PartPrice() * part.get$Quantity();

}

System.out.println("The car "+car+" has: "+totParts+" parts");
System.out.println(" The total price is: "+totPrice+" bucks");
DBObject.close(); // close the database connection

}

- 31 -

public static void main(String[] args) throws Exception {
DatabaseCLP p = new DatabaseCLP(args);
DBObject.connect(p.getCredential());
new PartList(p.getString("-carid"));

}
}

 11 11 General purpose database toolsGeneral purpose database tools

The EspritAppSuite Software contains usefull commandline tools that operate on your database. All
these tools can be used in the same way on all supported database systems. You may use these tools
also within shell scripts. All of them require database credential information to be passed at startup,
either with the -credfile option or a set of connection parameters (-driver, -dburl, -user, -password),
so that a database connection can be established.

 11.1 Tools for executing SQL commands

 11.1.1 DBExecute Tool

The purpose of the DBExecute tool is to run a single or a set of SQL statement(s) in the database. It
can be started by executing the batchfile dbexecute.bat in the bin subdirectory. There are a few
options in order to specify what it should do for you:

➔ -set <table.column=value>
Allows for setting a particular table column to the given value

➔ -cond <sql_condition>
Defines a SQL condition which is used in conjunction with the -set option

➔ -sql <sql_statement>
Just runs the given SQL statement in the database

➔ -script <sql_script_file>
Executes all SQL statements of the given scriptfile in the database

➔ -skiperrors
Continues execution of a script even if a statement fails

Please examine the dbexecute.bat file to find a few examples how to use.

 11.1.2 DBSelect Tool

The purpose of the DBSelect tool is to run a single query or a set of queries in the database (SQL
SELECT statements only). It can be started by executing the batchfile dbselect.bat in the bin
subdirectory. There are a few options in order to specify what it should do for you:

➔ -outfile <output_file>
Redirects the output to the given file. By default the output is printed to the shell console.

➔ -sql <sql_select_statement>
Defines what SELECT statement should be executed in the database

➔ -script <sql_script_file>
Executes all SQL SELECT statements of the given scriptfile in the database

➔ -delim <delimiter_char>
Defines which character is used as the field separator in the output. The default is '|'.

- 32 -

➔ -header
Tells whether a headline with the column-name information should be printed

➔ -skiperrors
Continues execution of a script even if a statement fails

➔ -silent
Print pure SELECT output only, suppresses any other info messages on the console.

Please examine the dbselect.bat file to find a few examples how to use it.

 11.2 Tools for Exporting/Importing data in UNL format

The UNL format is a simple ASCII format which represents your table data (without any meta
information). It is quite usefull for backing up data externally of the database or exchanging data
with other systems. Another common usage is for example this one: extract the table data into a file,
perform any processing (manual or automatic) on the data and re-import it into the database table.
The tools that allow you to do this are UnlExport and UnlImport.

See also: Loading/Unloading data with UNL

Note that these tools use DBObjects internally and thus require that a DBObject subclass exists for
each of your database tables. Therefore - besides the credential parameters - both tools have got the
following mandatory options in common:

➔ -dbopkg <dbo_package>
Tells in which package it can find the DBObject subclasses for your database. Of course these
classes must be available in your CLASSPATH.

➔ -table <tablename>
The name of the affected database table.

➔ -record <full_dbobject_classname>
Specifies the full classpath of the DBObject that represents a table. The DBObject class file must
be found in the CLASSPATH of course. You can use this option as an alternative to the -dbopkg
and -table options.

 11.2.1 UnlExport Tool

The UnlExport tool (see bin/unlexport.bat commandline script) reads records from a table and
extracts it's data into an UNL file. Besides the common parameters there are a few options to
specify what it should do for you:

➔ -outfile <UNL_output_file> (mandatory)
Redirects the UNL output to the given file.

➔ -cond <sql_ condition> (optional)
Allows to specify an SQL condition for filtering the records

 11.2.2 UnlImport Tool

The UnlImport tool (see bin/unlimport.bat commandline script) reads records from an UNL file and
inserts them as new records or updates existing ones respectively in the database table. Besides the
common parameters there are a few options to specify what it should do for you:

➔ -unlfile <UNL_input_file> (mandatory)
The UNL input file to be read.

- 33 -

➔ -viofile <violation_file> (otional)
If there are UNL parsing errors they will be reported to this file together with the failing input
line. This file can manually be reworked and then be used as input for another try.

➔ -update (optional)
Enforces updates of existing records only. No new records are inserted.

➔ -addnew (optional)
Enforces adding new records only. Existing records remain untouched.

➔ -newpk (optional)
Enforces all records from the UNL file to be added as new records with a new primary key. This
only works if the according table has a single numeric primary key.

 11.2.3 UnlExport Tool

The UnlExport tool (see bin/unlexport.bat commandline script) reads records from a table and
extracts it's data into an UNL file. Besides the common parameters there are a few options to
specify what it should do for you:

➔ -outfile <UNL_output_file> (mandatory)
Redirects the UNL output to the given file.

➔ -cond <sql_ condition> (optional)
Allows to specify an SQL condition for filtering the records

 11.3 Interactive Tools

 11.3.1 TableEditTool

The TableEditTool (see bin/table_edit.bat commandline script) is a graphical user interface for
editing records of database tables based on DBObjects. In order to edit a table you must enter the
fully qualified name of a DBObject subclass into the class name field and then press the load
button. If the class can be found then the records of the according tables will be loaded and you may
use the GUI for editing them. The most important command line options are:

➔ -credfile <credential_file> (mandatory)
The database credential file for connecting the database.

➔ -record <DBO_class_file_name> (otional)
The fully qualified name of a DBObject subclass. The according table content is read by default.
Note that the argument may also be any class that implements the DBRecord interface like for
instance any ComposedRecord subclass. Composed records are another very powerfull
application of DBObjects, just beyond the skope of this manual.

 12 12 Additional informationAdditional information
➔ For detailed information about all classes within the EspritAppSuite software please refer to the

javadoc documentation provided in the ESPRIT_HOME/docs directory, which you can browse
with your webbrowser (start at index.html).

➔ For an easy to understand discussion of the DBObject philosophy please refer to the article
published in JavaMAGAZINE in July 2004 (german), which you can find in the internet at:
http://www.sigs.de/publications/js/2003/04/buesch_JS_04_03.pdf.

➔ This article is also available in english at: http://www.tntsoft.de There you can also find
information about related products such as DynamIT (a database browser and editor).

- 34 -

➔ Included in the EspritAppSuite software there is a set of PowerPoint foils that give an overview
about DBObjects and related products (in the ESPRIT_HOME/foils directory).

➔ There is a special package called de.esprit.dbosuite.demo (ESPRIT_HOME/src directory)
which contains various source codes examples of how to use DBObjects. Feel free to explore
these files and use them as templates for your projects.

- 35 -

